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Separation of three-dimensional laminar boundary 
layers on a prolate spheroid 
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(Received 25 February 1987) 

The laminar flow around a prolate spheroid a t  6' angle of attack has been determined 
by the numerical solution of steady, three-dimensional boundary-layer equations 
with the external-pressure distribution obtained from an analytic solution of the 
inviscid-flow equations. The flow is shown to comprise a region of positive crossflow, 
followed by a substantial region of negative crossflow, a separation line and two 
terminal lines beyond which solutions of the boundary-layer equations could not be 
obtained. The separation line defines one boundary of a region of open separation and 
accords with the argument of Lighthill in that separation of three-dimensional 
boundary-layer flows is defined by a skin-friction line. A procedure is described that 
permits the identification of this skin-friction line and requires that it passes through 
the first location at  which the longitudinal component of the wall shear is zero and 
the circumferential component negative. The numerical tests show that the finite- 
difference scheme based on the characteristic box allows calculations against the 
circumferential flow and with an accuracy equal to that of the regular box provided 
that a stability criterion is used to choose the grid intervals. This stability criterion 
is shown to be essential for accurate solutions in the vicinity of the separation and 
terminal lines and implies the need for extremely fine grids. It is evident that similar 
numerical constraints will apply to calculations performed with an interactive 
boundary-layer procedure or with higher-order forms of the Navier-Stokes 
equations. 

1. Introduction 
Considerable attention has been paid in the last two decades to the subject of 

three-dimensional boundary layers, and much of this has considered the problem of 
solving three-dimensional boundary layers with the external boundary condition 
provided in the form of a pressure distribution. As is shown by Cebeci ( 1 9 8 6 ~ )  the 
boundary-layer equations can be solved accurately for a range of pressure 
distributions, provided that these do not give rise t o  strong negative crossflows. 
Unfortunately, strong negative cross flows exist in practice and an appropriate 
procedure for their representation is required. 

The principle of the existence of zones of influence and dependence for boundary- 
layer flows was postulated by Raetz (1957) and, in large measure explains the 
difficulty posed by negative crossflow velocities. The boundary-layer equations are 
diffusive in the direction normal to the body and wave-like in planes parallel to the 
surface so that the direction of propagation must be recognized as being along the 
local stream direction. Since this direction varies across the boundary layer, it is 
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FIGURE 1 .  Notation for prolate spheroid a t  incidence a :  I ,  and I ,  denote windward 
and leeward sides with s,, representing the stagnation point. 

possible to identify zones of influence and dependence for any point. In  calculation 
terms, this implies that a marching procedure may have to identify the correct 
direction in which to march if the need for downstream boundary conditions is to be 
avoided and the requirements of the zones of influence and dependence met. This 
need was recognized, but not entirely fulfilled, by Cebeci, Khattab & Stewartson 
(1981) with their developnient and application of the characteristic-box numerical 
scheme. 

A related problem of three-dimensional flows is the nature of separation and the 
precision of means to deal with it in a numerical procedure for the solution of 
boundary-layer equations. Maskell ( 1955) and Lighthill (1963) expressed different 
views and many authors have sought resolution of the consequent uncertainty 
though, in retrospect, it appears that none of the methods has been able to overcome 
inherent numerical difficulties. 

The problems of the previous two paragraphs are resolved by the present 
calculations which solve the three-dimensional boundary-layer equations with the 
characteristic- box scheme. This scheme ensures that the numerical grid satisfies a 
criterion for numerical stability and, as a consequence, that the solutions are 
accurate. 

To address the problem of solving three-dimensional boundary-layer equations 
and study the nature of flow separation in three-dimensional flows, we consider 
laminar flow over a prolate spheroid in the coordinate system of figure 1 .  The 
equation of a prolate spheroid can be written as 

(E)2+(y = 1 

and the geometric parameters and the inviscid velocity distribution can be obtained 
from analytical expressions as we shall describe in 92. 

If we denote the circumferential, longitudinal and normal directions by 0, x and 
y, respectively, then the solution of the three-dimensional boundary-layer equations 
requires initial conditions along the intersecting (2, y)- and (0, y)-planes. Those on the 
(2, y)-plane can be obtained from equations that take into account the symmetry of 
the flow and those on the (0, y)-plane depend on the coordinate system and require 
special procedures as described, for example, in Cebeci, Kaups & Khattab (1986). 
With a body-oriented coordinate system, the geometric parameters have a 
singularity a t  the nose and this can be removed by suitable transformations so that 
the boundary-layer equations can be solved to generate initial conditions in the 
(x, y)- and (0, y)-planes as discussed by Cebeci, Khattab & Stewartson (1980). 

The flow on a body of revolution a t  incidence usually has one plane of symmetry 
but two initial (x, y)-planes, one on the windward side and the other on the leeward 
side. The solution of the full three-dimensional boundary-layer equations can be 
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FIGURE 2. Typical flow regions on a prolate spheroid of thickness t = f a t  01 = 6" according to 
the calculations of Cebeci et al. (1981). 

obtained a t  6 = 6, with initial conditions generated on either line of symmetry and 
continued in the circumferential direction. The marching procedure raises the 
question of a preferred direction and its role in the development of the numerical 
procedure. To elaborate this point further, consider laminar flow over the prolate 
spheroid of figure 1 a t  CL = 6 O ,  for which figure 2 shows the separation lines and the 
line on which the circumferential skin-friction coefficient cf ,  is zero as computed by 
Cebeci et al. (1981). In  the region upstream of the line of zero cfo  (Region A) all u- and 
w-velocities are positive ; in the region between this line and the two separation lines 
(Region B), u is positive and w is negative near the surface; and in the region 
downstream of the separation lines (Region C) u and w are negative near the surface 
and positive away from the surface. 

The boundary-layer calculations can be performed in Regions A and B for a 
prescribed pressure distribution because the flow is attached and solutions can be 
obtained with initial conditions started on either line of symmetry. In  Region A, 
however, it is logical to initiate the calculations on the windward line because the 
crossflow velocity is in the marching direction whereas the crossflow direction will be 
opposite to the marching direction if they originate on the leeward line. In  the former 
case, the solutions can be obtained by a standard numerical procedure such as those 
of Crank & Nicolson (1947) or Keller (1974) and, in the latter case, a special 
numerical method is required to march in the direction opposite to that of the flow. 
The characteristic box was devised by T. Cebeci & K. Stewartson (1978, unpublished 
paper) to meet this requirement. It was used to obtain the results of figure 2, which 
are similar to  those obtained by Wang (1975) and to those obtained with the zigzag 
numerical scheme by Cebeci et al. (1981) on the same finite-difference mesh. It was 
noted, however, that the solutions exhibited a tendency to oscillate as Region C: was 
approached and further calculations with different meshes were performed with 
similar results. The investigation made clear the need for a means of assessing the 
accuracy and this, in turn, suggested a need for a criterion by which the mesh could 
be chosen by the numerical scheme so as to guarantee the required accuracy. A 
similar sequence of arguments followed from the examination of unsteady boundary 
layers with large flow reversal, Cebeci (19866), for which a relat'ionship of time 
interval to step length was identified as crucial to numerical accuracy and a criterion 
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was established and used together with a form of the characteristic-box scheme. As 
a result, accurate results were obtained for the flow around a circular cylinder started 
impulsively from rest and numerical difficulties were not encountered even in regions 
of very large flow reversal. 

The present study of three-dimensional steady flows benefits from the unsteady- 
flow investigation described in the previous paragraph in that a stability criterion of 
similar form is introduced and used with the characteristic-box scheme to obtain 
accurate and reliable solutions throughout the region of negative crossflow, Region 
B of figure 2. As we shall see in $5 ,  the stability criterion required values of step 
lengths in both directions which were much smaller than those used by Cebeci et al. 
(1981) and the upper and lower ‘separation lines’ of figure 2 are altered, with 
important differences in the flow structure. 

The three-dimensional equations are formulated in the following section in the 
manner required by the characteristic-box scheme of $ 3  which has been improved in 
several respects. Section 4 reports experiments performed to determine the 
consequence of the stability criterion and $ 5  presents new results for the flow over 
a prolate spheroid with thickness ratio of a at an incidence of 6’. The emphasis is on 
Region B where the circumferential flow velocity is negative and on the identification 
of the boundary between Regions B and C. The paper ends with a summary of the 
more important conclusions. 

2. Formulation 
Since this paper extends the work of Cebeci et al. (1980, 1981) the notation and 

formulation are similar. The boundary-layer equations and their boundary 
conditions for an incompressible laminar flow in a curvilinear orthogonal coordinate 
system appropriate to a prolate spheroid a t  incidence (figure 1 )  may be written as 

continuity 1 

a a a 
- (h, u) + - (h,  UI) + - (h, h, v)  = 0;  
a5 ae aY 

2-momentum : 

&momentum : 

Here 6 = x/a, 0 is the azimuthal angle and (u, w , v )  are the velocity components 
parallel to the body surface in the meridional and azimuthal directions and normal 
to  this surface, respectively. Further h,, h, are metric coefficients defined by 
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with t denoting the thickness ratio ( = b/a)  of the elliptic profile. The parameter 
K ,  is the geodesic curvature of the surface lines f = constant given by 

As in Cebeci et al. (1981), t6e velocity components u, and we are obtained from 
inviscid theory as 

3 = ~ i ( t )  cosa cosp- vSo(t) sina sinp c o s ~ ,  
u m 

Here p denotes the angle between the line tangent to the elliptic profile and the 
positive-f axis and is given by 

(1 - 62) ;  

[ l + g 2 ( t 2 - 1 ) $  
cosp = 

with the parameters VJt)  and VsO(t) defined as 

(9) 

To avoid the singularity a t  the nose (c  = - 1)  we use the procedure of Cebeci et al. 
( 1980) which employs transformations to solve the boundary-layer equations. Once 
the solutions are established for - 1 < f < to, calculations can be continued for 
5 > to in the above coordinate system. 

The solution of the equations for f > f o  is obtained with the equations expressed 
in terms of the dimensionless independent variable 7, that  is 

7 = (5)” - y ,  with s = J1h,d[, 

and the following dimensionless functions : 

With ( 1 1 )  and (12), a prime denoting differentiation with respect to 7, and 
p, = K,-;s, (2)-(5) can be written as 

i af i ag 
e ’ + P l f =  --+-- 

h, a t  h, a8’ 

f”+sj”e-&,g2+sp2 = s 

g”+sg’e+sK, fg+sP3 = s 

r = O ,  f = g = e = O ,  
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Here PZ and p3 are pressure gradient parameters defined by 
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Equations (13)-(15) are valid everywhere except at 8 = 0, 7t where g = 0 which 
makes (15) singular. To obtain solutions for this special case, we differentiate (15) 
with respect to 0 and set g = 0 in (13)-(15). We also define 

so that (13)-(16) can be written as 

G+sG’e+sK, fG+sP, = s--, f 
h, a t  

Here p4 is another pressure-gradient parameter defined by 

3. Numerical method 
Solutions to the conservation equations of the previous section have been obtained 

with the standard-box method of Keller in regions of positive crossflow velocity and 
the characteristic box in the presence of negative crossflow velocity. Details of the 
two methods are available, for example in Bradshaw, Cebeci & Whitelaw (1981) for 
three-dimensional flows. The accuracy of the solutions in regions with negative 
crossflow is strongly dependent on the choice of the finite-difference net, as discussed 
by Cebeci (1986b) and Cebeci, Khattab & Schimke (1987) for two-dimensional 
unsteady flows, and as shown here for three-dimensional steady flows. 

The characteristic-box szheme is based on the solution of the boundary-layer 
equations along the local streamlines. If we denote the streamline direction by $ and 
the angle that it makes with the g-axis by a, we can write (14) and (15) as 

where 

g”+sg’e+sK, fg+sP3 = 

A = a = tan-1 (2). 
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Keller’s method requires that (13), (24) and (25) are expressed as a first-order system 
and, for this purpose, we define 

f = n ,  g ’ = r n ,  (27a ,  b )  
and write (24) and (25)  as 

n‘+sne-sK2g2+s,8, = A-, af m’+sme+sK2 fg+sP3 = A- %? (27c ,  d )  w. 
The solution of the system given by (13), (27), subject to the boundary conditions 

in (16), by the standard-box or characteristic-box schemes depends on the difference 
equations for (27c, d )  ; the remaining equations are unchanged. To discuss the details 
of the procedure for the characteristic-box scheme, let us consider a net given by 

(28) 1 $ = O ,  t i = t i p l + k i ,  i =  1 , 2  ,..., I, 
8, = 0,  0, = OkPl+rk, k = 1 , 2 ,  ..., K, 
vo = 0, qi = ~ ~ - ~ + h , ,  j = 1,2,  ..., J .  

With the notation show in figure 3, the difference equations for (27a, 6 )  are obtained 
by averaging about the midpoint (ti, O k ,  qj+), 

h;l( f”,k- f : ,k)  1 3  1-1 = n!,T 1-5’ h:l(gt-k-gt’k) I I 1-1 = m!,? 1-5’ ( 2 9 ~ .  b )  

where, for example, 
= k + n!, k )  

3-2 2 3  3-1 ’ 

The difference approximations to (13) are obtained by centring all quantities except 
e a t  the centre of a cube (ti-;, B&f, yi-;) by taking the values of each parameter, say 
q, at the four corners of the box ; that is, 

(31 a )  &;, k = ’(qi-& 2 j k +qj-1 2-i, k )  = l( 4 q j  i, k + qd-l. , k + q ; L : + q ; - : ’ k ) ,  
3-f 

and e is centred by writing i t  as 

(31 b )  eGi, k-: = A(,!-%, k-a + e;~i, k-l 
2 3  9. 3-5 

The unknown parameters of (31) correspond to qi,k and e:-i,k-i so that, when a 
solution of the system given by (13) and (27) is obtained, f ,  g, n and m are computed 
a t  (i, k , j )  and e a t  (i-$, k - t , j ) .  This modified centring procedure is necessary to  
avoid oscillations which can arise from the use of (13) rather than the stream 
function, as discussed by Cebeci (1986~).  With this notation, (13) can be written in 



54 T .  Cebeci and W .  Xu 

+ 
5 

FICUKE 3. Fini tdifference notation for the characteristic-box scheme: 0, unknown ; 
x . known. 

where the relation between e: and ej-izk-i is 

The boundary conditions follow from (16) and can be written as 

f, = go = e ,  = 0 ;  f J  = ize, gJ = me. (36) 

The algebraic system given by (29a,  b ) ,  (32), (34), and that resulting from ( 3 7 4 ,  
together with the boundary conditions given by (36) is nonlinear. Linearization is 
achieved with Kewton's method and the equations are solved by the block- 
elimination method described, for example, in Cebeci & Bradshaw (1984). 

4. Accuracy and stability requirements of the characteristic-box scheme ; 
region of positive crossflow 

As discussed by Keller (1974), the box method is second-order accurate and 
unconditionally stable. While the accuracy of the standard box is well established for 
flows without backflow, that of the characteristic box and its dependence on the 
choice of the net' in the circumferential and streamwise directions has not been 
explored for flows with and without backflow. The use of the eharacteristic-box 
scheme in regions where there is no flow reversal allows its accuracy and sensitivity 
to the choiec of net spacings to  bc: examined by comparing results with those 
obtained with the standard box. 

The positive crossflow of the prolate spheroid, Region A of figure 1, is ideal for this 
purpose since accurate solutions can be obtained with the standard-box scheme by 
marching from the windward line of symmetry to the leeward line of symmetry and 
the results compared with those of the characteristic box in which the solutions are 
obt'aincd by marching from the leeward line of symmetry to the windward line of 
symmet>ry. This is examined further with the net shown in figure 3 a t  a given distance 
y from the surface and with the assumption that the solutions originate on the 
leeward line of symmetry ; the symbol x denotes the location where the solution is 
known and the symbol 0 denotes the location where the solution is to be found. The 
backward Characteristic from point P is in the local streamline direction and 
intersects the line a t  E when there is a positive crossflow velocity and a t  F when 
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TABLE 1. Streamwise wall shear parameter f:: computed with standard and characteristic box 
schemes at 6 = -0.50 

0 (degrees) 

FIGURE 4. Effect of streamwise spacing k,( = A t )  on the variation of the stability parameter p 
in the circumferential direction. 

the crossflow velocity is negative. Since the characteristic box computes the region 
EFP, which is known as the domain of dependence of point P, it  ensures that 
necessary information reaches point P from region EFP. It is important that the 
domain of stable computations can be determined a priori and this is achieved by 
determining the ratio p( = A8,/A8), which is also equal to (w/u) (h,/h,) (A€JA8), and 
requiring that it remains small during the calculations: we shall refer to this 
requirement as the stability criterion of the characteristic box. 

Table 1 shows the computed streamwise wall-shear values and figure 4 the 
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variations of the stability parameter p a t  6 = -0.50 with initial conditions generated 
a t  to = -0.90 for uniform 5" increments in 6 and for four different uniform step 
lengths < corresponding to 0.20, 0.10, 0.05 and 0.025. The solutions of the standard 
box were obtained by starting the calculations on the windward line of symmetry 
and marching towards the leeward line. The solutions of the characteristic box, on 
the other hand, were obtained with calculations originating on the leeward line of 
symmetry and marching towards the windward direction. The results show that the 
accuracy of the solutions of the standard box are not sensitive to the Ag-spacings 
used in the calculations but those with the characteristic box are. For the A t -  
spacings o f 0 2 0  and 0.10, the results of figure 4 indicate that the stability parameter 
/3 increases rapidly with breakdown of the solutions a t  6 = 130". With step lengths 
of 0.05 and 0.025, the calculations proceed without breakdown and with the expected 
lower values of p. Whereas those obtained with two coarse grids show oscillations in 
6, those with the finer grids do not. 

The results in table 1 also indicate that the accuracy of the solutions of the 
characteristic-box scheme are comparable with those of the standard-box scheme. 
For example, with A6 = 0.025 the maximum difference between values of ft 
computed by the two numerical schemes is 0.003 24 and occurs at 6 = 80 where /3 is 
maximum. The difference is smaller a t  other values of 6 ,  where /3 is less than its 
maximum value and could be further reduced with /3 less than 0.40. These results 
show that the accuracy of the characteristic box is the same as that of the standard 
box provided that the grid is appropriate and that the stability parameter /3 is a 
measure of the numerical accuracy. 

5. Region of negative crossflow 
Having established the accuracy of the characteristic box scheme and its stability 

requirements, we now turn our attention to the behaviour of flow in region B and to 
the identification of its boundaries with region C. It is expected that the calculations 
must be performed with care since the accuracy of the solutions has been shown to 
depend on the choice of the net in the circumferential and streamwise directions. For 
this reason it is useful to identify three subregions in which to perform the 
calculations. The first subregion starts at where the w-velocity becomes negative 
and extends to tB where the streamwise wall shearf; vanishes. According to figure 2 
and to the previous calculations of Cebeci et al. (1981), this region corresponds to 
-0.2 < 6 < 0.35, although these limits need to be determined more accurately. The 
second and third subregions begin at the first separation point cB and are bounded 
by the leeward line of symmetry and the upper 'separation' line and by the 
windward line of symmetry and the lower 'separation ' line, respectively. 

5.1. The 3 r d  subregion 
With initial conditions given a t  cA, the calculations were started at the next specified 
6-location on the line of symmetry and continued towards the leeward line of 
symmetry with the standard box scheme in regions where UJ is positive and the 
characteristic box scheme where zu is negative. Uniform step lengths of 2.5" in the 
circumferential direction, as in Cebeci et al. (1981), and several non-uniform step 
lengths (different grids are designated by roman numerals) in the streamwise 
direction, as summarized in table 2, were used to investigate the role of the stability 
criterion. 

Figures 5 and 6 show the results obtained with grid I. Figure 5 ( a )  shows the 



Separation of lamirmr boundary luyers on a prolate spheriod 

0.35 

0.30 

0.25 

0.20 

f:: 
0.15 

0.10 

- 

- 

- 

- 

- 

- 

O.O5L---- 0 90 120 150 180 

6' (degrees) 

57 

0 (degrees) 

FIGURE 5. Variation of streamwise wall-shear parameter f:: in the circumferential direction 
computed with grid I. 

variation of the streamwise wall-shear parameter74 with 8 for several values of f .  As 
can be seen, for values of f = 0.200 and 0.225, the solutions are smooth and free of 
oscillations. A slight oscillation occurs around 8 = 125" for 6 = 0.250 and increases 
substantially, covering a range of 6 from 120" to 135", a t  f = 0.270, after which the 
solutions are smooth and free of wiggles. The situation worsens for subsequent values 
of f < 0.30, but solutions do not break down in spite of the oscillations covering a 
larger region until they become smooth around 8 = 135". At f = 0.30, the solutions 
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FIGLTRE 6. Effect of Grid I on the variation of the stability parameter p in the circumferential 
direction. 

do not converge and cause the calculations to terminate. With solutions available for 
[ < 0.30, calculations a t  higher values were started on the leeward line of symmetry 
and continued towards the windward line of symmetry. As shown in figure 5 (b ) .  thc 
solutions exhibit oscillations in the same region as those that originated from the 
windward line of symmetry but they do not break down until 6 = 0.350. 

The cause of the oscillations was investigated by computing the maximum value 
of the stability parameter /3 at each @station a t  a given [-location and figure 6 shows 
the rcsults for several values of [. We note from figure 6 ( a )  that  /J’ increases with 
increasing [, and attains a maximum value at [ = 0.27 which is about 70% bigger 
than its maximum value at 6 = 0.20. The solutions for /3 also exhibit oscillations at 
thc same value of < as fh. Figure 6 ( b )  shows that, as the value of the stabilitgr 
parameter /3 increases further with increasing [, the oscillations worsen so that the 
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5 
FIGURE 7. Effect of grid on the variation of the stability parameter p with 6. The symbols 0 and 
x denote the location of the breakdown of the solutions originated from the windward and leeward 
lines of symmetry, respectively. 

accuracy of the solutions for values of f greater than 0.27 become increasingly 
suspect. 

Since the solutions obtained with Grid I were acceptable up to 5 = 0.270, the 
subsequent calculations, with the grids of table 2, began a t  this value. Figure 7 shows 
the variation of the stability parameter /3 for six grids in which the Af-spacing 
diminishes from I to VI and, as expected, a decrease in the Af-spacing decreases the 
maximum value of p. Figure 8 shows the effect of At-spacing on the computed values 
off: a t  6 = 0.30 and we note from figure 7 that p exceeds unity a t  this <-station with 
Grid I and the solutions of figure 8 (a)  oscillate as a result. With Grid 111, however, 
the maximum value of p decreases to 0.27 and the solutions improve considerably 
(figure 8 a ) ;  with the further refinement of Grid VI, the value of p a t  f = 0.30 drops 
from 0.27 to 0.028 and the solutions of figure 8 ( b )  are smooth. 

Figures 9, 10 and 11 show the variation off:: with 0 for conditions approaching 
flow separation. Figure 9 shows that the solutions computed with Grids V and VI are 
the same at  f = 0.315 and that they contain no oscillations, although a rapid 
decrease occurs in fk around 8 = 112.5' and is followed by a sharp increase and 
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FIGURE 8. Effect of grid on the variation of the streamwise wall-shear parameter f:: with 8 
at f ;  = 0.30. 

decrease and another continuous increase. The results in figure 10 exhibit a similar 
behaviour with Grid VI ; again there are no oscillations in the solutions but the dip 
in f:: moves towards the windward line of symmetry with increasing ( and finally 
becomes negative at E = 0.32375. The results in figure 11 were obtained with a 
solution procedure slightly different from that used for figures 9 and 10. I n  one set 
of calculations, as in figures 9 and 10, the calculations (shown by the solid line) were 
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FIGURE 9. Variation of the streamwise wall-shear parameter f:: with 0 for Grids V 
and VI  at 5 = 0.315. 
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FIGURE 10. Variation of the wall-shear parameter f:: with 0 for Grid VI  at three values of 6,  

performed with the characteristic-box scheme by marching from the leeward line of 
symmetry (LS) to the windward line of symmetry (WS). I n  a second set (shown by 
a dashed line) the standard-box scheme was used to march from the windward line 
of symmetry to 8 = 110' and with the characteristic scheme from the leeward line of 
symmetry to the same location. For 8 < 107", the results of the procedures agree with 
a maximum deviation between the f k  values of less than 0.002. The deviation 

$2 
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FIGURE 11. Effect of the marching direction on the variation of the wall shear parameter f:: at (a) 
6 = 0.3225, ( b )  6 = 0.32625. Solid line denotes solutions from LS and dashed line those from WS 
for 8 < 110' and LS for 8 > 1 1 0 O .  

increases, for 8 > 107" with maximum values of 0.0140 a t  8 = 110" and 0.0208 a t  
8 = 115". Examination of the magnitude of the stability parameter B indicates thab 
the maximum value of /3 is less than 0.1 for 8 < 107", but is 0.43 a t  8 = 112.5". 

The use of different grids in the (-direction allows us to determine whether or not 
the stability criterion is satisfied and if there is a preferred direction of marching from 
one line of symmetry to another. We would expect that the solutions obtained by 
marching from either line of symmetry should be identical, but this was not the case 
when Grid I was used and the reason for it was that the stability criterion was not 
satisfied. Additional calculations with the grids of table 2 confirm that if the grid is 
chosen so that the stability parameter is relatively small, they break down a t  the 
same location regardless of which line of symmetry the solutions originate. With Grid 
111, and as shown in figure 7 and table 3, solutions originating from the windward 
and leeward line of symmetry break down a t  6 = 0.315 and 0.32, respectively, even 
though the maximum value of /3 a t  6 = 0.315 is around 0.6; this occurs because the 
solutions a t  previous 6-stations have not satisfied the stability condition and allowed 
/3 to exceed unity. With Grid IV, solutions from windward and leeward symmetry 
lines break down a t  6 = 0.323 75 and x = 0.325, respectively, and closer examination 
of p (see figure 7) shows that the solutions obtained for previous values of 6 are more 
accurate than those that used Grids I and 11. The solutions become even more 
accurate and lead to almost the same breakdown location if a more refined grid, like 
VI, is used, for now the two 6-values are 0.3235 and 0.32375 a t  8 = 110". 

It is clear from the above discussions that for a uniform grid in 8(d8 = 2.5"), the 
solutions exhibit oscillations when the stability parameter /3 is large and that, with 
a proper choice of grid in 6, the magnitude of p becomes smaller and the oscillations 
disappear. It is also clear that, at some 6 starting around 0.29, a small kink develops 
in the wall-shear parameter f; around 13 = 113" and becomes more pronounced with 
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A( variations 

5 
0.1 500-0. 2500 
0.2500-0.2700 

> 0.2700 
0.150M.2750 

> 0.2750 
0.1600-0.2700 

> 0.2700 
0.1600-0.2000 
0.2000-0.2700 

> 0.2700 
0 . 1 6 0 ~ . 2 0 0 0  
0.2000-0.2700 

> 0.2700 
0.160M.2000 
0.200M.2700 
0.270M.2820 

> 0.2820 

VI 
- 

- 
- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.00250 
0.00125 
0.00050 
0.00025 

TABLE 2. Variable step lengths in the streamwise direction for the region < 5 < tB 

Grid 

I 0 

I1 0 

I11 0 

IV 0 

V 0 

VI 0 

* 

* 

* 

* 

* 

* 

5 
0.30 
0.35 
0.315 
0.325 
0.315 
0.32 
0.32375 
0.325 
0.3235 
0.3240 
0.3235 
0.32375 

e 
(degrees) 

115 
107.5 
112.5 
110 
112.5 
112.5 
110 
110 
110 
110 
110 
110 

TABLE 3. Effect of grid on the marching direction. Calculation breakdown point at : 
0 from windward side, * from leeward side 

increasing < (see Figures 8b,  9, 10 and 11) : it  is still present with Grids V and V I  even 
though the maximum value of /3 is less than 0.25. Further calculations were 
performed with variations in 68 in the range 106" < 8 < 128" to determine whether 
the kink was a feature of the grid. Table 4 shows the final calculation grid in which 
the A(-spacing was the same as in Grid IV up to f; = 0.28 and was varied for ( > 0.28 
as shown in table 5. 

Figures 12 and 13 show the results obtained a t  6 = 0.30,0.315 and 0.3155 with the 
grids of tables 4 and 5 and that the kink of figures 8 ( b )  and 9 has disappeared. As can 
be seen a t  ( = 0.315, the variation infk is very rapid near 8 = l l O o ,  as the flow tends 
to separation, which first occurs a t  ( =  0.3155 and 8 = 110.25", as shown in 
figure 12(c). The solution there is remarkably smooth with no kinks except even a 
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6 r k  6 ‘k 

(degrees) (degrees) (degrees) (degrees) 

0-65 
65-72.5 

72.5-90 
90-95 
95-105 

105-106 
10C107.5 

107.5-108 
108-108.4 

108.4-109 

5 
4, 3.5 
2.5 
2, 1.5 
1.25 
1 
0.75 
0.5 
0.4 
0.3 

109-1 11 
11 1-1 11.6 

1 1 1.6-1 14 
114-125 
125-128 
1 28- 1 37 
137- 152 
152-160 
16&180 

0.25 
0.3 
0.4 
0.5 
0.75 
1 
1.5 
2 
2.5 

TABLE 4. Non-uniform grid in the circumferential direction for the region - 1 < 6 < tB with 
step lengths in the streamwise direction corresponding to Grid I V  up to 6 = 0.28 and to those in 
table 5 for f > 0.28 

6 4 
0.280 04.2900 0.001 
0.290 04.2950 0.000 75 
0.295 0-O.3100 0.0005 
0.310(ro.3130 0.00020 
0.3130-0.315 1 0.000 15 
0.315 14.3172 0.000 1 

TABLE 5. Grid in the 6-direction for the non-uniform grid in table 4 

f:: 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 1 
0 h 
100 110 120 130 140 

(6) 
0’35 c 
0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0- 
100 110 120 130 140 

0 (degrees) 0 (degrees) 0 (degrees) 

FIGURE 12. Effect of the non-uniform @-grid on the variation of the streamwise wall shear f:: a t  
(a )  6 = 0.30, (b) 0.315, (c) 0.3155. 



Separation of laminar boundary layers on a prolate spheriod 65 

0 (degrees) 

$ 
0 
100 

0 (degrees) 

I 

110 120 130 140 150 
3 I( I 

160 170 180 
0 (degrees) 

FIGURE 13. Variation of the stability parameter /j' (solid lines) for the results shown in figure 12. 
(a )  = 0.30, ( b )  0.315, (c) 0.3155. Dashed line in (a )  is for results in figure 8 ( b ) .  

more rapid variation in fk around 8 = 110". Figure 13 confirms that the stability 
parameter p a t  these three 6-stations is small and i t  is interesting to  note that its 
maximum value with the new non-uniform grid in figure 13 (a) is practically the same 
as that obtained with uniform grid which led to the results of figure 8 ( b ) .  

The behaviour of the displacement-thickness distributions in this first subregion 
are also of interest, and figure 14 shows the variation of the two components of the 
dimensionless displacement thicknesses (S,*/s) @ and (@/s) @. Here a,* and 13: are 

The variations in 13: and 8: with increasing B are smooth except for a slight kink a t  
8 = 110.25" shown as a dashed line on figure 14, and the magnitudes remain finite 
with d6*/d8 becoming very large as the separation point is approached. 
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FIGURE 14. Variation of the dimensionless displacement thirkness in the circumferential 
direction in the first subregion at 5 = 0.3155. 

e 'k 
(degrees) (degrees) 

135-1 29 1 
129-1 24.5 1.25, 1.5, 1.75 

124.5-1 14.5 1 
114.5-1 13.2 1.3 
113.2-1 12 1 .% 

112-110.75 1.25 

TABLE 6. @-grid for subregion 0.3172 < 6 < 0.7125 with (-step lengths corresponding 
to those in table 7 

5.2. The second subregion 

The boundaries of the second subregion have been defined in part by the results of 
55.1 which showed that the first flow separation occurred at [ = 0.3155, rather than 
[ = 0.35 as computed by Cebeci et al. (1981), and the separation on the leeward line 
of symmetry occurred a t  [ = 0.7125. The calculations for the second subregion again 
made use of a non-uniform grid in the 8- and [-directions and i t  is evident that 
solutions from the leeward line of symmetry will terminate a t  8 = 110.25'. Since the 
stability parameter /3 puts severe restrictions on the grid, we have chosen to use a 
coarser grid in the &direction after some <-station downstream of<  = 0.3155 in order 
to take larger steps in the streamwise direction. For this purpose the calculations 
were performed with the non-uniform grid of table 4 up to 5 = 0.3172 after which a 
new 8-grid shown in table 6 was used for the region 110.75' < 8 < 135' ; for 6 > 135", 
the @grid remained the same as in table 4. 

Since 8 = 110.75' is the last &station where the calculations can be performed in 
the subregion 2 with the grid of table 6, i t  is necessary to modify the numerical 
procedure a t  this @station. This was accomplished by replacing the interpolation 
procedure used to obtain the solutions at E of (see figure 3) with an extrapolation 
procedure. Since the stability parameter /3 is small, this modification should not 
influence the accuracy of the solutions and this was verified by calculating up  to 
[ = 0.3125 with both procedures. 
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5 kt 6 
0.31724.3180 0.00030, 0.00050 0.520W.556 0 
0.318o-O.3240 0.001 00 0.556 W.600  0 
0.324 o-O.3600 0.002 00 0.6000-0.6500 
0.360 o-O.450 0 0.001 50 0.65004.685 0 
0.450 O . 4 9 0  0 0.001 25 0.685 o-O.720 0 
0.490 o-0.520 0 0.001 00 0.720 0-0.735 0 

0.735 O . 8 5 0  0 

TABLE 7 .  [-grid for subregions 2 and 3 

~ ~~ 

kt 
0.000 75 
0.00050 
0.00040 
0.00025 
0.000 50 
0.001 00 
0.001 25 

Calculations with the grids of tables 6 and 7, figures 15-20, show that the stability 
parameter /3 remained small and led to solutions free of oscillations. We note from 
figure 15 that the value of /3 is relatively constant up to 6 < 0.60 with a maximum 
value of around 0.7 due to the coarse grid in the $-direction. Figure 16 permits a 
comparison between the wall-shear values computed by the present method with 
those of Cebeci et al. (1981) whose solutions with Grid I oscillate as they approach 
0 = 110.25' and cause the wall shear to vanish. The &location where this occurs 
increases with and leads to the upper 'separation' line indicated in figure 2. The 
present solutions do not oscillate, approach 8 = 110.25' smoothly and remain finite. 
It is interesting to note also that in the absence of oscillations, both solutions agree 
well with each other. 

Figures 17 and 18 show the variation off; with 6 and I3 for several values of I3 and 
6,  respectively. We note from figure 17 that the variation off: for 8 = 110.75 and 
6 < 0.3155 is similar to that a t  0 = 110.25 for which separation occurs first a t  
6, = 0.3155. A t  this &-value, the trend of yk, as expected, changes from the one 
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FIGURE 17. Variation of the streamwise wall shear f:: with E in the second subregion. Dashed 
lines are assumed variations of f::. 

corresponding to 8 = 110.25 to 8 2 112 and its variation is very smooth up to g = 0.60 
and its value is finite. The behaviour off; on the other 8 = const. lines is also very 
smooth and finite up to c = 0.60. The skin-friction line with 8 = 180 also shows a 
similar behaviour. Again, except for E = 0.7125 wheref:; vanishes, the wall shear is 
always smooth and finite. We conclude from these results and from those of figure 16 
that for 6 < 0.60, the magnitude off; is finite and the solutions are essentially free 
of oscillations. 

For ,c > 0.60, the stability parameter /3 begins to exceed 0.70 and, at subsequent 
values of 6,  the solutions begin to oscillate and do not allow the calculations to be 
performed for all values of 8 up to 110.75", as was the case for 5 < 0.60. The last 8- 
location becomes progressively worse as 6 increases. For example, the solutions 
for 8 = 140' can be performed only up to 6 = 0.67 essentially without oscillations and 
for 8 = 120.5', the last g-station free of oscillations is 0.6125. 
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FIGURE 19. The boundaries of the second subregion. 

Figure 19 shows a sketch of the second subregion and the variation of the 'terminal 
line 1' which represents the last @-station where the solutions can be obtained 
without oscillations a t  a given (-location. As can be seen, for f ;  < 0.60, the difference 
between the &line ( = 110.25') that corresponds to 6, = 0.3155 and the terminal line 
1 is only 0.50", indicating that the nature of the 'upper separation' line of figure 2 
is significantly different from the terminal line 1. We note from figure 20 that the 
behaviour of the limiting streamlines approaching the terminal line does not 
resemble that of those near an 'envelope' in that  convergence of the streamlines is 
not apparent, and that the terminal line 1 does not correspond to a separation line. 
The direction of the limiting streamlines has been computed in terms of the angle 
they make with the (-axis, from I ,  

y = tan-' 
f;. 
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y (degrees) 

5 
FIGURE 20. The variation of y on the terminal line TI .  The insert shows the behaviour of the 

limiting streamlines. 

e Th 

(degrees) (degrees) 
10&107.5 1.5 

107.5-1 08.7 1.2 
108.7-109.75 1.05 

TABLE 8. 0-grid for the third subregion 

This angle is zero on the leeward line of symmetry and varies along terminal line 1 
from - 50" to - 80" for 0.3155 < 6 < 0.60 and from - 80" to 0" as shown in figure 20. 
The increase in y occurs rapidly over a very small range of 0 near the line of 110.25'. 
We expect that  if the calculations had extended beyond 110.75', this angle would 
approach -goo, which represents the limit of the calculations since, for y < -go", 
information would be required from downstream. 

5.3. T h e  third subregion 
This subregion, like that of $5.2, starts a t  c,, = 0.3155 and extends to the windward 
separation point, 6, = 0.8425. It includes the domain between the windward line of 
symmetry and the separation line (see figure 2). Again we use a variable &grid 
similar to thc onc given in table 6 with a variable [-grid identical to that in table 7 .  
For 0 < 0 < 106O, the non-uniform 0-grid is the same as the one given in table 4 and 
for 106 < 0 < 109.75O, it is given in table 8. 

Calculations with the above grid, shown in figure 21, indicate that the stability 
parameter p is less than 0.2 everywhere. This is reflected in the results of figures 22 
and 23 which show the variations off; with [ and 8 for several values of 0 and 6 ,  
respectively. I n  contrast to the second subregion, the solutions are free of oscillations 
up to the &location where the streamwise wall shear f vanishes. These results are 
in good agreement with those of Cebeci et al. (1981). 
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FIGURE 21. Variation of the stability parameter p with t3 in the third subregion. 
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5 
FIGURE 22. Variation of the wall shear f:: with 5 for constant values of 0 in the third subregion. 

Dashed line denotes results for 0 = 180". 

0 20 40 60 80 100 
0 (degrees) 

FIGURE 23. Variation of the wall shear f:: with 19 for constant values of 5 in the third subregion. 
Dashed line denotes results for 5 = 0.3155. 
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5 
FIGURE 24. Terminal line 2, separation line and zero c,-line in the third subregion. The arrows 

denote the direction of the skin-friction line computed from g i / f  i. 

Figure 24 shows a sketch of the third subregion with three lines, corresponding to 
crossflow reversal, separation and terminal line 2 where ft is zero and y = -90'. 
Cebeci et al. (1981) calculated similar crossflow reversal and terminal lines and 
deduced that separation would occur in close proximity to the latter. Present results 
confirm this deduction and show that the separation and terminal lines are a small 
distance apart. It is important to note that, in contrast to the earlier deduction, the 
present investigation does not support the view that three-dimensional separation 
corresponds to an envelope of limiting streamlines, and this topic is discussed further 
in the following section. 

6. Nature of separation 
There are several definitions of boundary-layer separation in three-dimensional 

flows, as discussed by Williams (1977). While they provide some insight into the 
nature of the separation phenomenon, they are of limited help in determining the 
nature of the flow in the vicinity of the separation line. The most useful interpretation 
of flow separation in three-dimensional flows is due to Lighthill (1963) and is based 
on the constant volume flow rate E between two limiting streamlines separated by a 
distance h and two streamlines at a small distance y from the surface, i.e. 

E = 0.5(7; + 7;)iy'h. (38) 

Separation corresponds to  the divergence of the streamlines from the surface, 
indicated by a drastic increase in y, and occurs if both 7, and r0 approach zero or if 
h approaches zero. I n  the former case, the solutions are singular and a separation line 
begins a t  one singular point on the body. I n  the latter case, the resultant wall shear 
remains finite but the spacing between the limiting streamlines becomes very small. 
This type of separation in which the limiting streamlines coalesce with another 
limiting streamline is consistent with Lighthill's view that three-dimensional 
separation corresponds to  a skin-friction line. It is not clear from (38), however, how 
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FIGURE 25. Behaviour of the limiting streamlines on the body. 
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4 
FIGURE 26. Behaviour of the limiting streamlines in the (a) third and (b) second subregions. 

one can identify such a skin-friction line in a flow with open separation such as that 
considered here. 

Figures 25 and 26 show the limiting streamlines obtained by integrating the 
direction field of the wall shear h,g;/h,fA as a function of 6 and 0 with integration 
starting at  5 = - 0.16. We note that the streamlines are deflected from the 6-direction 
owing to the effect of the stronger pressure gradient in the &direction. The flow is 
deflected initially in the 0-direction and turns back to the 5-direction as the 
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t=- 
FIGURE 27. Conjectured behaviour of the limiting streamlines in the separated region between 

two terminal lines. 

circumferential shear stress r0 becomes negative. With further increase in [, the 
streamwise pressure gradient becomes more adverse and causes a reduction in the 
streamwise wall shear f t .  It appears from figure 25 that  the first point that 
corresponds to negative g: and zero f k  can be regarded as the beginning of the 
separation line and identifies the skin-fraction line as the separation line in three- 
dimensional flows : this point occurs a t  0 = 110.25' and 6 = 0.3155. The behaviour of 
the skin-friction lines on either side of the separation line is shown separately in 
figure 26. It is clear from figure 26(a)  that the skin-friction line through the point P 
a t  B = 110.25', [ = 0.3155 has all the properties of the separation line proposed by 
Lighthill and that the other streamlines approach this line in a manner consistent 
with his arguments. Figure 26 ( b )  shows a similar pattern of the limiting streamlines 
originating from terminal line 2. Although these streamlines are not as extensive as 
those from the windward line, owing to the small distance between the separation 
and the terminal lines, they have the same behaviour. It is also clear from figures 25 
and 26(b)  that there is no upper separation line as in figure 2. 

The extension of calculations beyond terminal line 1 was discussed in $5.2, where 
it was pointed out that the angle between the skin-friction lines and the [-axis must 
exceed 90". The principle be zones of dependence requires that information from 
higher values of [ be provided and, since this information is not available, solutions 
of the boundary-layer equations cannot be obtained. Thus the flow between the two 
terminal lines cannot be determined by the present method. It may be conjectured, 
however, that the streamlines in Region C will follow the paths indicated by dotted 
lines on figure 27. 

The blowing velocity vw, that  is, 

required to simulate the viscous/inviscid interaction provides another indication of 
flow separation together with the height of the displacement surface A which can be 
obtained by integrating the following expression along the inviscid streamlines lC. : 
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FIGURE 28. Variation of the dimensionless blowing velocity in the circumferential direction 

where use represents the resultant inviscid velocity. We note from (40) that  large 
variation in v, corresponds to large changes in the rate of growth of the displacement 
surface A and hence in the deflection of the streamlines away from the surface. 
Figure 28 shows the variation of the dimensionless blowing velocity E which is related 
to  the dimensional blowing velocity v, by 

where R, = uos /v .  As in the previous calculations of Cebeci et al. (1981), the blowing 
velocity E is negative over a significant portion of the region of negative crossflow 
and the commonly held view that boundary layers under adverse pressure gradients 
act as blowing sources with respect to the external flow is seen not to be universally 
correct. The figure also shows that the blowing velocity E increases rapidly a t  the 
first separation point k = 0.3155 with similar behaviour on either side of this location 
and with very large magnitude. The blowing velocity has similar behaviour a t  other 
values of 6 as the solutions approach the conjectured separation line, and offers 
further support to  the idea that the separation line in three-dimensional flows 
corresponds to a skin-friction line and to our procedure of identifying this line. 

7. Concluding remarks 
The following principal conclusions may be draw from the preceding text. 
(i) The laminar flow pattern around the prolate spheroid a t  6" angle of attack is 

complicated and includes a substantial region of circumferential flow reversal, a 
separation line and a region of open separation. Two terminal lines have also been 
determined and correspond to limits of applicability of the boundary-layer equations 
when solved with a prescribed external pressure distribution. 

(ii) The numerical tests carried out in the region of positive crossflow velocity 
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show that the accuracy of the characteristic box is similar to that of the regular box 
scheme provided that the stability criterion is maintained at a sufficiently small 
value. 

(iii) In regions of substantial flow reversal in the circumferential direction, the 
choice of grid becomes increasingly important as the terminal and separation lines 
are approached. The stability criterion imposes a requirement for extremely small 
grid intervals so as to avoid numerical oscillations and to ensure accuracy. These 
observations are consistent with those previously made in relation to two- 
dimensional unsteady boundary-layer flows with substantial regions of flow reversal. 
The extension of the present procedure to include interaction with inviscid-flow 
equations or solutions of higher-order forms of the Navier-Stokes equations would 
encounter similar numerical constraints. This observation also applies to unsteady 
flows where earlier calculations with interaction showed the need to satisfy the 
stability criterion with consequent small grid intervals in space and time. 

(iv) The results reveal a single separation line in contrast to earlier calculations 
performed without consideration of numerical accuracy. The nature of this 
separation line supports Lighthill’s view that separation in three-dimensional 
boundary-layer flows is a skin-friction line rather than the envelope of limiting 
streamlines suggested by others. 

(v) A procedure is proposed to identify the separation line which involves the 
determination of the skin-friction line that passes through the first location at which 
the longitudinal shear stress is zero and the circumferential shear stress is negative. 

This work was sponsored by the Air Force Office of Scientific Research under 
contract F49620-84-C-0007. 
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